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Abstract. We consider a one-dimensional tight-binding model with on-site potentials V,  = 
Ag'"'(0) where A is a strength parameter and g'")(x) is the nth iterate of g(x) .  the universal 
function describing the structure of2'superstable cycles in infinitely bifurcated m a p  under- 
going period doubling sequences. Interesting features of the model revealed in numerical 
computationsare,firstly. thepresenceofalargenumberofmobilityedgesformingaclustered 
pattern for a certain range ol values of A and, secondly, non-smooth self-similar variation of 
inverse localization length y as a function of energy E .  

1. Introduction 

The observation of various 'unusual' features of energy spectra and eigenfunctions of 
the Schrodinger equation for one-dimensional aperiodic chains has led to a widespread 
interest in such systems in recent years. More generally, one-dimensional systems in 
various contexts may be described in terms of the products of transfer matrices, which 
constitute an interestingstudy from the point of view of understanding wave propagation 
ininhomogeneousmedia(see, e.g., Ishii 1973, Sokoloff 1985, Kohmoto eral 1983,1987, 
Ostlund et all983, Drummond 1989). The behaviour of Lyapunov exponents of such 
products as a function of some characterizing parameter, e.g. the frequency of lattice 
vibration or energy of one-electron states, sheds light, on the one hand, on fundamental 
theoretical question such as the existence and properties of singular continuous spectra 
of Schrodinger operators and, on the other hand, on a wide range of phenomena of 
practical interest (e.g. transport properties in solids, confinement of electromagnetic 
waves in stratified media). 

The most widely studied types of aperiodicity are the random and the quasiperiodic 
chains in the tight-binding model (TBM), for which a range of exact results including 
scaling properties of spectra and eigenfunctions have been obtained (see, e.g., Aubry 
and Andre 1979, Kohmoto et al1983, Ostlund et al1983, Souillard 1984). The study of 
quasiperiodic chains, in particular, opens the door to considering various other types of 
aperiodicity (see, e.g., Wiirtz et af 1989, Fishman and Griniasty 1988; for some recent 
results on quasiperiodic chains with more than one incommensurate frequency, see 
Casati et all988 and Chulavesky and Sinai 1989). In contrast with random chains, a one- 
dimensional quasiperiodic chain with on-site potentials given by 

v, = A cos(2RQn - U )  (1) 
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(where Q is irrational, A is a strength parameter and a i s  a phase parameter) exhibits the 
phenomenon of ‘metal-insulator’transition at A = 2and. for A > 2, all states except one 
at the exact centre of the spectrum become exponentially localized. An interesting 
question in this connection is the existence of mobility edges in the spectrum. Thus, a 
TBM studied originally by Soukoulis and Economou (1982) corresponding to on-site 
potentials 

V ,  = A[cos(hQn) + t cos(4nQn)l 

has recently been shown to involve a complicated mobility edge pattern (Sun 1989) 
in the spectrum. Another important class of aperiodic chains corresponds to on-site 
potentials of the form 

v, = hcos(2nQ/nl” - U). (3) 
Modelsof this type wereconsideredin the weak-potential limit by FishmanandGriniasty 
(1988) and later by Thouless (1988), For 0 < v < 1 these models come under the general 
classificationofslowlyvaryingpotentials, andDasSarmaeta1(1988)showthat fork < 2 
the spectrum involves a pair of mobility edges located symmetrically. This means that 
the transition at A = 2 is not a sharp metal-insulator type, since for A < 2 the spectrum 
includes extended states covering an energy interval that gradually diminishes in width 
as A is increased. Following a suggestion of Das Sarma et a1 (1988), Crisianty (1989) 
rigorously established the existence of mobility edges in square-well potential models 
of the slowly varying type. 

2. Presentation of the model and numerical results 

The existence of mobility edges and their location in the energy spectrum are expected 
to have important bearing on the transport properties of one-dimensional chains (see, 
e.g., Sokoloff 1985, Sun 1989). In thiscontext, we present heresomepreliminaryresults 
of numerical investigationson a classof one-dimensional chains possessing a self-similar 
Cantor-set-like structure that is likely to prove interesting on the followingcounts. 

(i) Studies on wave propagation in aperiodic systems with self-similar fractal struc- 
tures are not common in the literature despite the fact that fractal structures arise in 
many diverse contexts, and experimental techniques such as molecular beam epitaxy 
can be resorted to for the artificial growth of such structures (see, e.g., Piertonero and 
Tosatti 1986, Vicsek 1989, Parker 1985). 

(ii) For certain ranges of the strength parameter A ,  there appear to exist a large 
number of mobility edges in the spectrum, and these mobility edges appear to be 
organized in a clustered fractal structure. In contrast with the work of Das Sarma et al 
(1988) and Crisianty (1989). the mobility edges are not a consequence of the slowly 
varying nature of the potential. 

(ii) The mobility edges disappear gradually as A is increased, and, for A larger than 
a certain value, all the states become localized. 

(iv) In contrast with other potentials studied in the literature, the variation in the 
inverse localization length y with energy E is highly non-smooth. 

(v) The energy spectrum in general possesses a self-similar structure as revealed in 
the location of the mobility edges, variation in y with E for localized states, and density 
of states. 
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The TBM that we study is given by 

u.+, -k u.-, -k V.u, = Eu. (4) 
where U,, is the amplitude of the wavefunction at the nth site and V, are the on-site 
potentials given by 

v. = Ig'"'(0). ( 5 )  
Here I is the strength parameter already referred to, g(x) is the well known universal 
function encountered in the scaling theory of period-doubling bifurcations (see, e.g., 
Feigenbaum 1978, 1979, 1980, Collet and Eckman 1980, Mira 1987), and g(")(.x) rep- 
resents the n-times iterate of g(x). Before presenting our results, a few comments may 
help to place the model in perspective. 

Recent years have witnessed interest in understanding how aperiodic functions and 
sequences of various types of complexity arise as trajectories of simple deterministic 
dynamical systems, such as low-dimensional dissipative and conservative maps. As a 
simple example, one may consider the case of quasiperiodic sequences that may be 
associated with phase-locked to quasiperiodic bifurcations of trajectories in circle maps 
(see, e.g., Kaneko 1986). In this context it is a useful exercise to consider wave propa- 
gation in one-dimensional chains characterized by aperiodicities of various types cor- 
responding to different bifurcation regimes of maps. Indeed, important scaling 
properties of energy spectra and eigenfunctions in certain quasiperiodic one-dimen- 
sional chains appear to be natural extensions of a universal scaling theory of circle maps 
(Ostlund eta1 1983). By analogy, we could consider periodic chains with arbitrarily large 
unit cells of length Z N ,  and, in the limit N -  m, go over to an aperiodic chain as in 
Feigenbaum period-doubling sequence. For example, the on-site potentials may be 
taken to be proportional to the location of superstable cycle elements of cycle lengths 
Z N  of the logistic map 

X' A(l - 2') (6) 
with the corresponding value of A denoted by A,+ Comparing this with the next value 
of A, namely A = AN+ we see that a unit cell of size 2" is replaced by one of size Z N + I ,  

and hence each of the energy bands of the former splits into two in the latter. Thus, as 
N becomes large, we gradually encounter a highly fractured band structure until in the 
limit N +  =, we may end up with some exotic spectrum. The process is similar to the 
way in which a quasiperiodic chain may be thought of as a limiting case of a sequence of 
periodic chains of larger and larger unit-cell size. A notable difference between the two 
schemes, however, is the self-similarity in the first (each band splitting in exactly two at 
each stage), there being no corresponding self-similarity in the approximation of an 
irrational by successive truncations of itscontinued-fraction representation (Azbell979) 
that is involved in the second one'(see, however, the work by Hofstadter 1976 and Xu 
1986,1987). Now, although 2N superstable cycles of the map (6) differ somewhat from 
ZNcyclesof other similar maps, there is known to exist a universalstructure of ZNclusters 
in all infinitely bifurcated maps of a given type irrespective of their specific forms, given 
by the universal function g N ( x )  (Feigenbaum 1979, 1980). and the limit N - t  m of the 
sequence of these functions is another universal function g(x). The sequence g("'(0) of 
iterates of this function is known to be aperiodic with a self-similar Cantor-set-like 
structure having a fractal dimension of nearly 0.5388 (Grassberger 1981). An indication 
of the nature of its aperiodicity is given by its power spectrum which has a universal 
structure with peaks at periodicities ZN for all N (Nauenberg and Rudnick 1981). It is 
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F i y r c  1. Den,iiy-of-rlalcs p plols ,versus energy E )  compuied numericall) lor our model 
(equalions(.IJand(j~jwirhalarl~ces~ze V=ZLUd(a)).  = I.d;(b)L = 2 . O . ( c J l  = 3 O ; ( u J  
,i = d . O : ( c ) A  = 6.0. Numerical valuesofp h3ueno1 been ind.ciredrincediffereniplolsha\,e 
been rexaled d,Ifercntl) along the p 3x1s lor convenience 01 prerenlslion and 3re no1 
essenii31 for our purpose. 

with reference to this particular sequence that we construct the TBM given by equation 

Figure 1 gives the density-of-states plots and figure 2 the corresponding inverse 
localization length versus energy plots for this model for five arbitrarily chosen values 
ofA that may be considered to be more or less representative (see below). For any given 
A,  the spectrum consists of two major clusters of eigenvalues separated by a gap, and 
there are smaller gaps within the clusters, the pattern being repeated on progressively 
finer scales. For low A the gaps decrease in width very rapidly as we look at smaller 
intervalson the energy scale, so that the energy spectrum hasa predominantly continuum 
character and most of the states are extended in nature (figures I(a) and 2(a ) ) .  Ash is 

(4). 
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Figure 2. Inverse localization length y versus energy E plots: (a)-(=) correspond, respect- 
ively, to the density-of-states plots in figures l(o)-l(e), Points corresponding to allowed 
states have been joined with straight lines (corresponding to energy gaps for the finite-size 
lattice)soastoobtainapiecewisecuntinuousplot. Asin figure 1,numericalvaluesoIyhave 
not been indicated. 

increased, small groups of localized states appear in the lower-energy cluster of the 
spectrum, attended by mobility edges (figures l(b) and 2(b) ) .  Initially the localized 
states appear to have a 'thin' fractal structure, covering a vanishingly small measure of 
the entire energy spectrum, but. with increasing A, entire intervals of the spectrum 
acquire Cantor-set-likestructuresunti1 at A near about 2.7 we find very few mobility edges 
in the lower-energy half, while the upper-energy half continues to have apredominantly 
continuum structure. It is important to note the non-smooth self-similar nature of the y 
versus E plot in the lower-energy portion as most of the states become localized. (We 
do not include in this paper quantitative discussion on self-similarity in various features 
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of the spectra since our numerical investigations are based on rather small lattice size. 
Detailed statements will be made in a future publication.) This is to be contrasted with 
chains given by equations (1) and (3). For example, figures 3(a) and ] (a )  of Das Sarma 
et ai  (1988) show a typical density-of-states plot and the corresponding y versus E plot, 
rcspectively, in a model of type (3), of which the former shows that the spectrum has a 
fragmented and clustered structure, but the clustering does not have a scale invariance 
associated with it,  which results in a smooth variation in y with E along the spectrum 
(except at the two mobility edges). Indeed, we expect that the nature of fragmentation 
in models of form (3) will not be much different from that in an inmmmensurate 
quasiperiodic chain. which has been thoroughly investigated by &bel (1979), Hof- 
stadter (1976) and Xu (1986.1987); as already noted, there is no strict self-similarity in 
the continued-fraction representation of any given irrational. By contrast, the self- 
similarity of the sequence @"(O)} (this self-similarity is based primarily on two scale 
factors, a and d, CY = 2.502 9 .  . . ; in a more accurate description, however, an infinite 
number of scale factors are to be taken into account) leads to a self-similar Cantor-set- 
like spectrum which in turn causes the non-smooth y versus E graph to possess a self- 
similar appcarance. For comparison we plot in figures 3(a) and 3(b) the density-of-states 
plot and the y versus E graph. respectively, for hypothetical one-dimensional chain 
whose energy spectrum has an exact middle-thirds Cantor set structure (one does not 
know what sequence of on-site potentials in  a TBM would give rise to this spectrum, but 
a plausible guess is that this sequence itself will have to have a Cantor-set-like structure 
(see figure 4 caption); this 'inverse problem' of constructing chains which give rise to 
different types of spectrum has not been discussed in the literature but appears to be 
interestingfrom the pointofviewofpotential applications). Onecansee the pronounced 
non-smooth scale-invariant structure of the graphs, very much similar to that arising in 
the TBM that we are considering. 

Returning to figures 1 and 2, we observe that the lower half of the spectrum becomes 
entirelydominatedbylocalizedstatesat somehnear3.0(figures l(c)and2(c)),although 
the upper half remains dominated by extended states. As L is increased further. the 
upper halI in turn becomes'infected' (figures l(d) and 2(d)) and the mobility edges are 
pushedmoreandmore totheright-handendof thespectrumunti1,at hsomewherenear 
6.0, almost alistates become localized and both halvesacquire similar structures (figures 
l(e)andZ(e)). 

A comparable system which is somewhat easier to investigate would be a TBM with 
on-site potentials given by the sequence (the point set corresponding to which is an exact 
middle-thirds Cantorset)O, f ,  ($)*, $'+ ($)*, (f)3, I + (3)3, (1)2 -t (@3, 3 + ($)2 + (f)", . . . , 
each term multiplied by a strength parameter h. A typical density-of-states plot and y 
versus E plot for this model are shown in figures 4(a) and 4(b), respectively. Similarity 
with the corresponding plots for the model studied above is quite apparent, particularly 
inrespectofthenon-smoothvariationinywithE. Resultsofmoredetailedinvestigations 
will be reported separately. 

All spectra in our TBM have been computed by using the 'LR decomposition with 
shift'algorithm ofdiagonalization of tridiagonal matrices (Wilkinson 1965) wmith a lattice 
size of 2048. Inverse localization lengths have been calculated from the spectra by using 
the formula 

T K Roy and A Lahiri 

y ( ~ )  = ( N  - I)-[ E' InIE - E ' \  (7) 

where N is the lattice size. The universal function g(x)  has been approximated with a 
polynomial of degree 14 as done by Feigenbaum (1979). 
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Fiyre3. (a) Density-of-states and ( b )  yversus Eplats fora hypothetical lattice whose energy 
spectrum i s  an exact middle-thirds Cantar set. The numerical values indicated along the axes 
are arbitrary to the extent o f  a multiplicative canstant in E and an additive constant in y. 
Numerical values along p have not been indicated as they are not relevant. Points rep- 
resenting allowed energies are joined by straight lines. 
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Figure 4. ( a )  Density-of-states and (b)  y versus E plots for a TBM with omsite potentials V. 
given by the sequence 0. f .  (8)'. ( I )  t ($)'. . . . (see text). where each term is multiplied by 
the strength parameter A = 4.0. Note the non-smooth self-similar nature of the y versus E 
plot. The close resemhlance of ( b )  with figure 3(b) issignificant. As before. numerical values 
for p and y have not been indicated. Points representing allowed energies are joined by 
straight lines. 
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3. Concluding remarks 

The realization of systems with structures intermediate between spatially periodic and 
random has in recent times acquired substantial plausibility. The new techniques to 
produce semiconductor heterostructures (Merlin eta1 1985, Toddetall986) withcontrol 
of the growth of each layer allow experimental constructions of pre-assigned spatial 
arrangements of barriers. Properties of such heterostructures perpendicular to the 
layers can be modelled, e.g. in terms of appropriate chains of transfer matrices. Other 
important instances of irregular deterministic potential structures are to be found in the 
context of classical diffusion (Rammal and Toulouse 1986) and anomalous relaxation in 
spin glasses (Hoffmann et a1 1985, Mezard eta1 1984, Kutasov et a1 1986). 
Of particular significance in this context is the correspondence, discussed by Lahiri 

and Ghosal (1987, 1988), between stable spatially inhomogeneous states of certain 
model reaction-diusion systems and hyperbolic trajectories of reversible mappings 
(Sevryuk 1986). Such correspondence could be invoked to produce desired spatial 
inhomogeneities in,  say, appropriate chemical reaction tanks. It has been recently 
pointed out (Lahiri 1990) that four-dimensional reversible maps can undergo inverted 
period-doubling sequences of the Feigenbaum type, giving rise to chaotic hyperbolic 
orbits having a self-similar structure. Taken together, these two observations lead to 
the possibility of precisely the type of spatial structure that we have considered in this 
paper. The physical possibility of such structures has recently received a boost through 
the experimental observation of Turing-type patterns in reaction-diffusion systems 
(Castets et ~11990). 

Eigenvalue spectra and localization properties of one-dimensional aperiodic struc- 
tures, when interpreted in the context of electronic properties, are directly responsible 
for the transmissioncharacteristicssuch as the resistanceoffinitechains. While adiscrete 
spectrum leads to a resistance increasing exponentially with the length of the chain, 
singular continuous spectra have been shown to lead to various power-law dependences 
(Sokoloff 1985, Wurtz et a1 1989, Sun 1989). As already mentioned, mobility edges are 
expected to play a significant role in determining these transmission characteristics. Of 
yet greater importance of the types of model considered here is their possible implication 
in respect ofAc@unsmissionpropertiesof linearchains. In contrast with one-dimensional 
chains with completely bound states (e.g. insulators), linear chains with mobility edges 
included in a singular continuous spectrum present the novel possibility of quanfum 
diffusion under time-periodic external perturbation (Roy and Lahiri 1990). Thus we are 
led to asituation where a one-dimensional chain can possibly possess sharply contrasting 
DC and AC transmission properties. 

Investigations regarding the possibilities indicated are in progress. 
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